
Tetrahedron
Tetrahedron Letters 45 (2004) 3789–3791

Letters
From 1,4-diketones to N-vinyl derivatives of 3,30-bipyrroles and
4,8-dihydropyrrolo[2,3-f]indole in just two preparative steps
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Abstract—Dioximes of hexane-2,5-dione and cyclohexane-1,4-dione react with acetylene in an autoclave (KOH/DMSO, 100 �C, 1 h,
initial pressure 14 atm) to give 2,20-dimethyl-1,10-divinyl-[3,30]bipyrrole and 1,5-divinyl-4,8-dihydropyrrolo[2,3-f]indole in 12% and
6% yields, respectively, thus exemplifying a very simple, straightforward route to inaccessible or unknown pyrrolic assemblies.
� 2004 Elsevier Ltd. All rights reserved.
Bipyrrolic structures are widespread in Nature and are
constituents of prodigiosins and corrins, including
vitamin B12 and its analogs.1 However, this refers mainly
to 2,20-bipyrrole derivatives, whereas other pyrrolic
assemblies, particularly 3,30-bipyrroles, have remained
understudied for a long time whilst having only minor
importance among the bipyrroles.1;2 Interest in these
bipyrroles appeared as recently as the 1980’s due to the
need for the synthesis of the antitumor agent CC-1065,
where 3,30-bipyrroles were building blocks.3;4 The
strategy for their synthesis was based on a sequential
building up of the pyrrole rings using several preparative
steps.3

Meanwhile, a straightforward approach to 3,30-bipyr-
role assemblies could be achieved using the known two
step transition from ketones to pyrroles via the reaction
of ketoximes with acetylene in the presence of the KOH/
DMSO system, often referred to as the Trofimov reac-
tion.5;6

To prove the feasibility of this approach, we chose two
1,4-diketones, namely hexane-2,5-dione 1 and cyclo-
hexane-1,4-dione 9, as representing open chain and
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cyclic members of the series, and subjected their dioxi-
mes, 27 and 10,8 to the reaction with acetylene.9

A number of alternative pathways to the required
reaction could interfere. Thus, in the case of dioxime 2,
three bipyrroles could be formed (Scheme 1) due to the
rearrangements5;10 involving both the methylene and
methyl groups in the intermediates 3–5.

The target 2,20-dimethyl-1,10-divinyl-[3,30]bipyrrole 6
was isolated by column chromatography in 12% yield
(not optimized) as the major product.11 The structurally
isomeric bipyrroles 7 and 8 were only minor components
of the reaction mixture, because they would have been
built up with the participation of the methyl groups of
the intermediates 3–5, which are less reactive compared
to the competing methylene groups.5;10 Thermodynam-
ics may also contribute to the product distribution, since
the major isolated isomer 6 is the most conjugated.

In the case of cyclohexane-1,4-dione dioxime 10, under
the same conditions, the unconjugated bipyrrolic cyclo-
phane 13 was isolated in 6% yield (not optimized),12

instead of the expected conjugated 3,30-linked bipyrrole
system 14 (Scheme 2).

The structure of the 1,5-divinyl-4,8-dihydropyrrolo[2,3f]-
indole 13 followed from a 2D NOESY experiment,
which showed cross-peaks between the protons H3 and
H4 (H7 and H8). Quantum chemical calculations
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[B3LYP/6-311þþG(d,p)] confirmed the higher stability
(DE ¼ 1:33 kcalmol�1)13 of isomer 13 as compared to
isomer 14.

The reason why structure 14 becomes thermodynami-
cally less favorable relative to structure 13may be due to
the H–H repulsion between the two adjacent methylene
groups in the cyclohexane ring, which distorts the
coplanarity of the whole tricyclic skeleton [B3LYP/
6-311þþG(d,p) data], thus decreasing the pyrrole–pyrrole
conjugation. It turns out that, according to the quantum
mechanical calculation, 13 is planar including the two
vinyl groups, the latter deviating out of the plane by no
more than 1�. The thermodynamic stabilization of 13
may originate from transannular interactions of the
pyrrole moieties as supported by the absence of nodes in
the HOMO of 13 between C3

0–C8
0 kcalmol�1 and C4

0–
C7

0.

Interestingly, of the two key intermediate vinyl-
oxyhydroxylamines 16 and 15 (Scheme 3),5;10 the former
one (16) leading to 13 is 0.47 kcalmol�1 less stable than
its isomer 15 [B3LYP/6-311þþG(d,p) calculations for
the most stable conformations], that is, this particular
kinetic factor works against the experimental result.

In conclusion, the reaction of 1,4-diketone dioximes with
acetylene in the KOH/DMSO system provides a direct
access to N-vinyl-3,30-bipyrroles and 4,8-dihydropyr-
rolo[2,3-f]indoles, which are promising pharmacophores,
monomers, and building blocks for biologically impor-
tant molecules.
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8. Compound 10. To the mixture of cyclohexane-1,4-dione 9
(7.00 g, 62mmol), NH2OHÆHCl (10.84 g, 156mmol),
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charged, and the reaction mixture was diluted with water
(up to 100mL) and extracted with Et2O (4 · 30mL). The
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over anhyd K2CO3 and filtered. After distilling off the
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graphy (basic Al2O3, hexane–ether, 2:1).
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11. Compound 6. Yield 12%. Light yellow transparent liquid,
n23D 1.5780. 1H NMR (CDCl3): d 6.96 (d, 2H,
3J4–5 ¼ 3:1Hz, H5), 6.89 (dd, 2H, 3JAX ¼ 8:9Hz,
3JBX ¼ 15:6Hz, HX), 6.16 (d, 2H, H4), 5.07 (dd, 2H,
3JAB ¼ �0:9Hz, HB), 4.63 (dd, 2H, HA), 2.20 (s, 6H, Me).
13C NMR (CDCl3): d 130.88 (Ca), 125.07 (H2), 117.38
(H5), 115.15 (H4), 111.39 (H3), 97.33 (Hb), 10.74 (Me). IR
(thin film) mmax: 2920, 1638 (mC@Cvin), 1560 (C–Cpyr), 1488
(C–Cpyr), 1424, 1378 (C–Cpyr), 1305 (N–Cvin), 1284, 961
(sHC@CH), 889, 857 (xCH2), 709 (dC–Hpyr), 589
(xHC@CH) cm�1.

12. Compound 13. Yield 6%. Yellowish needles, mp 188 �C
(from Et2O). 1H NMR (CDCl3): d 7.00 (d, 2H,
3J4–5 ¼ 2:8Hz, H5), 6.86 (dd, 2H, 3JAX ¼ 9:2Hz,
3JBX ¼ 15:8Hz, HX), 6.17 (d, 2H, H4), 5.08 (dd, 2H,
HB), 4.63 (dd, 2H, HA), 3.74 (s, 4H, CH2).

13C NMR
(CDCl3): d 130.48 (Ca), 126.44 (C40,80), 116.19 (C2;6),
115.31 (C30,70), 109.04 (C3,7), 96.77 (Cb), 21.87 (CH2). IR
(KBr) mmax: 1640 (mC@Cvin), 1572 (C–Cpyr), 1486 (C–Cpyr),
1377 (C–Cpyr), 1306 (N–Cvin), 1262, 964 (sHC@CH), 862
(xCH2), 711 (dC–Hpyr), 585 (xHC@CH) cm�1.

13. The computational and structural details of the com-
pounds 13 and 14 will be considered elsewhere.
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